An O (N log N) Fast Direct Solver for Partial Hierarchically Semi-Separable Matrices - With Application to Radial Basis Function Interpolation

نویسندگان

  • Sivaram Ambikasaran
  • Eric Darve
چکیده

This article describes a fast direct solver (i.e., not iterative) for partial hierarchically semiseparable systems. This solver requires a storage of O(N logN) and has a computational complexity of O(N logN) arithmetic operations. The numerical benchmarks presented illustrate the method in the context of interpolation using radial basis functions. The key ingredients behind this fast solver are recursion, efficient low-rank factorization using Chebyshev interpolation, and the Sherman-Morrison-Woodbury formula. The algorithm and the analysis are worked out in detail. The performance of the algorithm is illustrated for a variety of radial basis functions and target accuracies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast symmetric factorization of hierarchical matrices with applications

We present a fast direct algorithm for computing symmetric factorizations, i.e. A = WWT , of symmetric positive-definite hierarchical matrices with weak-admissibility conditions. The computational cost for the symmetric factorization scales as O(n log n) for hierarchically off-diagonal low-rank matrices. Once this factorization is obtained, the cost for inversion, application, and determinant c...

متن کامل

An O(n) Direct Solver for Integral Equations on the Plane

An efficient direct solver for volume integral equations with O(N) complexity for a broad range of problems is presented. The solver relies on hierarchical compression of the discretized integral operator, and exploits that off-diagonal blocks of certain dense matrices have numerically low rank. Technically, the solver is inspired by previously developed direct solvers for integral equations ba...

متن کامل

A Parallel Fast Direct Solver with Applications

The eeectiveness and applicability of a parallel fast direct O(N log N) solver for linear systems with block tridiagonal separable coeecient matrices is considered. This solver is applied in the solution of subsonic full potential ows using the Newton linearization and an algebraic ctitious domain method. The time{harmonic electromagnetic scattering by an obstacle is modeled by the Helmholtz eq...

متن کامل

PetRBF--A parallel O(N) algorithm for radial basis function interpolation

We have developed a parallel algorithm for radial basis function (rbf) interpolation that exhibits O(N) complexity, requires O(N) storage, and scales excellently up to a thousand processes. The algorithm uses a gmres iterative solver with a restricted additive Schwarz method (rasm) as a preconditioner and a fast matrix-vector algorithm. Previous fast rbf methods—achieving at most O(N logN) comp...

متن کامل

Fast Evaluation of Radial Basis Functions: Methods for Generalized Multiquadrics in Rn

A generalised multiquadric radial basis function is a function of the form s(x) = ∑N i=1 diφ(|x − ti|), where φ(r) = ( r2 + τ2 )k/2 , x ∈ Rn, and k ∈ Z is odd. The direct evaluation of an N centre generalised multiquadric radial basis function at m points requires O(mN) flops, which is prohibitive when m and N are large. Similar considerations apparently rule out fitting an interpolating N cent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2013